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The diversity of nine dairy strains of Lactococcus lactis subsp. lactis in fermented milk was investigated by both genotypic and
phenotypic analyses. Pulsed-field gel electrophoresis and multilocus sequence typing were used to establish an integrated geno-
typic classification. This classification was coherent with discrimination of the L. lactis subsp. lactis bv. diacetylactis lineage and
reflected clonal complex phylogeny and the uniqueness of the genomes of these strains. To assess phenotypic diversity, 82 vari-
ables were selected as important dairy features; they included physiological descriptors and the production of metabolites and
volatile organic compounds (VOCs). Principal-component analysis (PCA) demonstrated the phenotypic uniqueness of each of
these genetically closely related strains, allowing strain discrimination. A method of variable selection was developed to reduce
the time-consuming experimentation. We therefore identified 20 variables, all associated with VOCs, as phenotypic markers
allowing discrimination between strain groups. These markers are representative of the three metabolic pathways involved in
flavor: lipolysis, proteolysis, and glycolysis. Despite great phenotypic diversity, the strains could be divided into four robust phe-
notypic clusters based on their metabolic orientations. Inclusion of genotypic diversity in addition to phenotypic characters in
the classification led to five clusters rather than four being defined. However, genotypic characters make a smaller contribution
than phenotypic variables (no genetic distances selected among the most contributory variables). This work proposes an original
method for the phenotypic differentiation of closely related strains in milk and may be the first step toward a predictive classifi-
cation for the manufacture of starters.

The mesophilic lactic acid bacterium Lactococcus lactis is one of
the most extensively exploited microorganisms; it is used in

particular in the manufacture of dairy products. Because of its
industrial importance, L. lactis has been used as a model bacte-
rium for academic and application-oriented studies. Taxonomi-
cally, L. lactis has three subspecies, L. lactis subsp. horniae, L. lactis
subsp. lactis (including L. lactis subsp. lactis bv. diacetylactis), and
L. lactis subsp. cremoris (1). Only L. lactis subsp. lactis and L. lactis
subsp. cremoris are used in starter cultures for dairy production. L.
lactis subsp. lactis colonizes a wide ecological niche (dairy prod-
ucts, as well as animals and plant surfaces) (2), whereas L. lactis
subsp. cremoris is found mostly in dairy environments (3, 4). Re-
cent genotyping methods involving DNA fingerprinting analysis,
including pulsed-field gel electrophoresis (PFGE) and compara-
tive genomic hybridization, have been evaluated for their suitabil-
ity for characterizing genomic diversity and identifying reliable
genetic markers for phenotypic subspecies differentiation (5–9).
Multilocus sequence typing (MLST), at the level of the gene, has
proved to be a powerful method for describing L. lactis population
structure and phylogeny with a limited number of genes se-
quenced (5, 6). Recent MLST analysis of L. lactis subsp. lactis (6)
confirmed L. lactis population adaptation to the milk niche and
led to the proposal of a new classification into two ecotypes, one
corresponding to “domesticated” strains essentially isolated from
dairy starters or fermented products and the other corresponding
to “environmental” strains isolated from various sources such as
plants, animals, and raw milk. The domesticated strains make
only a small contribution to the genetic diversity of L. lactis subsp.
lactis. Indeed, phylogenetic analysis indicates that they essentially

form two clonal complexes (CCs) that probably emerged only
recently from a single founder event (6).

The characteristics of L. lactis subsp. lactis used in starter cul-
tures for fermented milk dairy production determine their dairy
phenotype, which is related to efficient growth in milk associated
with fast coagulation. Coagulation is due to acidification and pre-
serves milk from unwanted bacterial or mold growth. However, L.
lactis subsp. lactis also contributes to the organoleptic quality (tex-
ture and sensory) of the fermented products. Strain selection has
focused on diverse but specific technical characteristics: acidifica-
tion (10), redox potential (11), texture (12), and physiological
features like aroma production (13, 14), nisin synthesis (15), au-
tolysis (16, 17), and enzymatic activities (18). In these previous
studies, selection was restricted to one or a limited number of
criteria and the behavior of the strains as a whole cannot be pre-
dicted. Phenotypic starter screening requires exhaustive study in a
controlled dairy environment to evaluate strain performance, but
this is a very complex and time-consuming approach that is in-
compatible with the screening of strain collections. Genotyping
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and genomic sequencing are efficient and have been largely auto-
mated. There was an expectation that this approach could be used
to classify and discriminate between strains and predict their phe-
notypes (19). Several studies combining genomic, transcriptomic,
and phenotypic data for L. lactis have been conducted in recent
years (7, 8, 20–23), but they have failed to establish strong exploit-
able links among the genotype, its expression, and dairy pheno-
types. Rather, they have highlighted significant transcriptomic
polymorphisms among L. lactis subsp. lactis strains with the same
dairy origin (21) and the difficulties associated with explaining
and predicting a phenotype other than the presence or absence of
relationships involving the gene (19, 20). Understanding the de-
terminants of the phenotypic diversity of dairy strains is a prereq-
uisite for predictive approaches and requires phenotypic screen-
ing in environmental conditions that are as close as possible to
those encountered during the process of interest (18).

Therefore, this work reports an integrated approach to the as-
sessment of the phenotypic biodiversity of nine L. lactis subsp.
lactis strains exhibiting specific dairy phenotypes and selected as
being representative of the “domesticated” ecotype in milk. Strain
phenotypic signatures were compared with strain genotypic di-
versity, revealing discrepancies between the two classifications
and highlighting the need for an integrated genotypic and pheno-
typic classification that takes into account both aspects.

MATERIALS AND METHODS
Bacterial strains and growth conditions. Nine strains of L. lactis subsp.
lactis were selected from commercial starter cultures (Danisco-France)
and from various laboratory collections (Laboratoire de Microbiologie et
Génétique Moléculaires, Université Paul Sabatier, Toulouse, France, for
Sx and EIPx strains; LMA, Caen, France, for UCMAx strains). The origins
and characteristics of the strains used in this study are listed in Table 1.
Stock cultures were kept frozen (�20°C) in M17 broth (Oxoid Ltd., Bas-
ingstoke, Hampshire, England) containing 2% (wt/vol) lactose and 20%
(vol/vol) glycerol. Individual strains were first grown at 37°C in sterilized
(110°C, 15 min) reconstituted skim milk (10.9%, wt/vol). These overnight
cultures were used to inoculate (10%, vol/vol) 500 ml of pasteurized stan-
dardized cow’s milk (fat, 35 g/kg, protein, 40 g/kg) in 1-liter flasks. The pH
was unregulated (initial value of 6.60). Fermentations were continued at
28°C until the pH reached a value of 4.60, and then the milk was trans-
ferred to 4°C. The fermented milk was stored in the dark at 4°C for 1
(sample A) or 14 (sample B) days before analysis. Six biological replicates
(independent batches) were performed for each strain.

Growth measurements and acidification activity. Bacterial growth in
milk (�, h�1) and cell cultivability after 1 and 14 days of storage were
determined in triplicate by plating appropriate dilutions onto M17 agar,
incubating them at 30°C for 48 h, and counting the colonies (CFU · ml�1).

Cell cultivability was calculated as the ratio of the viable count after 14
days to that after 1 day.

Acidification activity of lactococcal cells was monitored by using the
CINAC system (Alliance Instrument). For each culture, four descriptors
were defined to characterize the acidification activity during fermenta-
tion: the maximal acidification rate (Vmax), expressed in 10�3 pH units
per minute and calculated from the slope of the pH curve as a function of
time; the time (in hours) necessary to reach Vmax; the pH at which Vmax is
attained; and the time (in hours) necessary for the pH to decrease to 4.60.

Fermentation analysis. Substrate (lactose and citrate) and fermenta-
tion end product (lactate, formate, acetate, acetoin, diacetyl, and ethanol)
concentrations in fermented milk after 14 days of storage were deter-
mined by high-pressure liquid chromatography (HPLC) as previously
described (24). Briefly, a solution of 0.3 M barium hydroxide and zinc
sulfate was used to precipitate proteins from the samples. The samples
were then analyzed in a Bio-Rad HPX87H column maintained at a tem-
perature of 48°C in a 1200 series preparative HPLC apparatus (Agilent
Technologies, Waldbronn, Germany), and 5 mM H2SO4 was used as the
eluent at a flow rate of 0.5 ml · min�1. Free amino acid (FAA) concentra-
tions in milk culture supernatants at 14 days were measured by HPLC as
follows. Proteins in the samples were precipitated by adding 4 volumes of
methanol to 1 volume of the sample and incubating the mixture overnight
at 4°C. The mixture was then centrifuged, and the supernatant was kept
for amino acid analysis as previously described (25). The amino acids were
automatically derived with ortho-phthalic aldehyde (OPA) and 9-fluore-
nylmethyl chloroformate (FMOC), and the derivatives were separated on
a Hypersil AA octadecyl silane column (Agilent Technologies, Wald-
bronn, Germany) at 40°C by using a linear gradient of acetate buffer (pH
7.2) with triethylamine (0.018%), tetrahydrofurane (0.03%), and aceto-
nitrile (60%). A diode array detector was used at 338 nm for OPA deriv-
atives and at 262 nm for FMOC derivatives. These analyses were per-
formed on the six biologically independent batches for each strain.

Identification and semiquantification of volatile organic com-
pounds (VOCs) in fermented milk. VOCs in fermented milk were iden-
tified and semiquantified by the Analytical Chemical Service of ISVV (In-
stitut des Sciences du Vin et de la Vigne), Bordeaux, France. Separation
and semiquantification were carried out by solid-phase microextraction
(SPME)-gas chromatography (GC)-mass spectrometry (MS) analysis.

The internal standards used for GC analysis were [2H5]ethyl acetate
(ethyl acetate-d5) and [2H15]octanoic acid (octanoic acid-d15) from
Sigma-Aldrich (Saint-Quentin-Fallavier, France) and [2,2-2H]3-methyl-
butanal (3-methylbutanal-d2) from Euriso-top (Saint-Aubin, France).
Solutions were prepared at 100 mg · liter�1 with MilliQ water and kept
at 4°C.

A 5-g sample of fermented milk was mixed with 250 �l of internal
standard mix solution (at 10, 20, and 20 mg · liter�1 for ethyl acetate-d5,
octanoic acid-d15, and 3-methylbutanal-d2, respectively) in a 20-ml glass
sample vial. The vial was then tightly sealed, and the contents were ho-
mogenized with a vortex shaker at 55°C for 30 min. The SPME fiber

TABLE 1 Dairy L. lactis subsp. lactis strains used in this study

Strain Origin CC ST

Presence of:

ReferencecitP lacE prtP

S86 Starter CC1 10 � � � 6
UCMA5713 Grassland (France) CC1 18 � � � 6
S87 Starter CC1 15 � � � 6
EIP41A Raw milk (France) CC1 15 � � � This study
EIP33A Raw milk (France) CC1 15 � � � This study
DIA-A Starter Choozit DIA A FRO (France-Danisco) CC1 15 � � � This study
EIP33F Raw milk (France) CC1 34 � � � This study
EIP37F Raw milk (France) CC1 34 � � � This study
MC70 Starter Choozit MC-70 FRO (France-Danisco) CC2 7 � � � This study
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(Supelco, Bellefonte, PA) used was coated with a 50/30-�m layer of divi-
nylbenzene-carboxen-polydimethylsiloxane (57299-U; StableFlex) and
maintained in the headspace at 55°C for 90 min. The volatile analytes
adsorbed to the SPME fiber were analyzed by GC-MS with an HP 5890 GC
system coupled to an HP 5972 quadrupole mass spectrometer (Agilent
Technologies, Wilmington, DE) equipped with a Gerstel MPS2 autosam-
pler. The compounds were separated on a BP 21 capillary column (60 m
by 0.32 mm, 0.25-�m film thickness; SGE, Courtaboeuf, France). The
injection port was programmed to heat at 250°C. The oven temperature
was programmed at 40°C for 5 min, raised to 240°C at 3°C · min�1, and
then held at that temperature for 10 min. Volatile compounds were iden-
tified in SCAN mode (mass range of 29 to 200 m/z at a scan rate of 1.49
scans · s�1), and the ionization energy was set at 70 eV. Only compounds
for which the area was at least 2-fold the background noise were selected.
The eluted compounds were identified by their retention times and by
comparison of their mass spectra with those in the National Institute of
Standards and Technology database (http://www.nist.gov/srd/ [July 2002
version]).

Selected volatile compounds were detected and semiquantified with
the mass spectrometer operating in selected-ion-monitoring mode with
electron ionization at 70 eV. VOCs were semiquantified by determining
the ratio of the total ion count (TIC) of each compound to the TIC of the
corresponding internal standard for 1 g of fermented milk. The internal
standard was chosen according to the chemical function and the retention
time. For each strain, analytical triplicates were performed. Detection and
quantification limits and coefficients of variation were determined for
each compound.

DNA manipulation and phylogenetic analysis. Bacteria were grown
at 30°C on M17 broth. Genomic DNA was extracted from overnight
cultures with the DNeasy tissue kit according to the manufacturer’s in-
structions (Qiagen, Hilden, Germany). Genetic markers of important in-
dustrial traits (lacE, encoding lactose-specific enzyme II of the phospho-
transferase [PTS] system; prtP, encoding the cell envelope-associated
serine proteinase; and citP, encoding the membrane-bound citrate per-
mease involved in citrate uptake) were detected by PCR amplification and
standard agarose gel electrophoresis. PCR primers for the lacE (lacE-F2,
5=-AGCGTCTATGGTAGGGTTCC-3=; lacE-R2, 5=-GATGGCACGGTT
ACGATCTG-3=; PCR product size of 606 bp), prtP (prtP-F2, 5=-GAGGC
AGTGAAACTGTTAGTC-3=; prtP-R2, 5=-TCATTCGCAGCAGTACAT
C-3=; PCR product size of 713 bp), and citP (CitP1, 5=-ATGATGAATCA
CCCG-3=; CitP2, 5=-ACTTCATGAATATGAC-3=; PCR product size of
1,327 bp) genes were designed by standard procedures with Clone Man-
ager version 9.0 software (Sci-Ed Software). The cycling conditions used
were 95°C for 5 min followed by 30 cycles of 95°C for 30 s, 55°C for 1 min,
and 72°C for 1 min for the lacE and prtP genes or 98°C for 5 min followed
by 30 cycles of 98°C for 10 s, 42°C for 30 s, and 72°C for 1 min for the citP
gene, using an MJ Mini thermocycler (Bio-Rad, Hercules, CA). Each PCR
involved a 25-�l mixture containing 10 ng of genomic DNA, 0.5 mM each
primer, and 12.5 �l of iQ SYBR green Supermix (Bio-Rad, Hercules, CA).

MLST analysis was performed by the six-locus MLST scheme exactly
as described in reference 6. The concatenated sequences generated were
used for phylogenetic analysis with MEGA5 software (26).

For PFGE, preparation of genomic DNA embedded in an agarose
matrix, digestion of DNA by restriction endonucleases, and electropho-
resis were performed as previously described (27). The genomic related-
ness of bacterial strains was estimated from pairwise comparisons of
PFGE SmaI macrorestriction patterns, and a matrix of binary data was
constructed from the presence or absence of each band. Dice coefficients
(SDs) and corresponding genomic distances (1 � SD) for each pairwise
comparison were calculated from the matrix of binary data with the
WINDIST program (28). Dendrograms based on the unweighted-pair
group method using average linkages (UPGMA) were constructed with
the NEIGHBOR program of the PHYLIP package v3.69 (29).

Data analysis. All variables (physiological descriptors, metabolite
concentrations, and genetic distances) were first normalized (centering

[subtracting the population mean] and then scaling [dividing this differ-
ence by the standard deviation of the population]) to allow an unbiased
comparison of these heterogeneous data. Missing data in COV semiquan-
tification for a third of the biological replicates were filled in by using the
geometric mean of the available replicates of that strain. To investigate the
relationships between strains and the phenotypic variables of fermented
milk, an analysis of variance (ANOVA) of the 82 phenotypic variables was
performed. The level of significance for all statistical analyses was set to a
P value cutoff of 0.05. Spearman’s rank-order correlations with P values
adjusted by the Benjamini-Hochberg method to control the false-discov-
ery rate (30) were performed to investigate pairwise associations between
the variables involved in strain phenotypes in milk. Multidimensional
methods such as principal-component analysis (PCA), hierarchical as-
cendant classification (HAC), partial least-squares discriminant analysis
(PLS-DA), and sparse PCA were carried out with R free statistical software
(2.15.0 version) and the mixOmics package (31). The Euclidian distance
metric and Ward’s criterion were used for HAC in phenotypic and geno-
typic classifications to constitute hierarchical groups of mutually exclusive
subsets in which members are maximally similar with respect to their
specified characteristics (32). Bootstrap analysis was used with 1,000 sim-
ulations by cluster analyses. Consensus trees were built by bootstrapping
(bootstrap value �0.50). To identify discriminatory variables, a variable
selection method was developed on the basis of the principal components
(PCs). The variable selection combined a test of strain dependency (re-
moval of one strain from the sample in order to differentiate markers
highly dependent on a strain from common markers) and a selection of
the most contributory variables for this set of individuals. The contribu-
tion of a variable to the selected PCs is obtained by the ratio of the sum of
the squared factor score divided by the sum of the eigenvalues. The con-
tributory threshold was set to 75% for this procedure; therefore, only
variables with a contribution above the third quartile of the contributory
distribution were selected as most contributory variables. This procedure
was done iteratively for each strain, and strain clustering based on the
variables selected was then performed. The cluster robustness and conse-
quently the reliability of the selected variable set were assessed by boot-
strapping. In this work, the variables selected represented 25% of the total
variables (i.e., 20 variables for phenotypic analyses and 22 for phenotype-
genotype investigation, respectively) with the highest head count among
each set of the most contributory variables. In order to provide a deeper
analysis of the robustness of the variable selection method developed,
results were compared to those of variable selection through sparse PCA
(33).

RESULTS
Genotypic characterization of L. lactis subsp. lactis strains. To
investigate the phenotypic diversity of L. lactis subsp. lactis strains
under growth conditions close to those of relevant industrial pro-
cesses, nine strains isolated from raw milk and starter cultures
(Table 1) were selected according to their dairy phenotype as pure
cultures (ability to grow efficiently in milk inducing fast coagula-
tion). All of these strains were considered to belong to the “do-
mesticated” ecotype (6). The genetic markers of industrial traits
checked by PCR amplification were the lacE gene, encoding lac-
tose-specific enzyme II of the PTS system, and the prtP gene, en-
coding the cell envelope-associated serine protease. Both were
present in all nine strains. L. lactis subsp. lactis bv. diacetylactis
isolates are widely used in the dairy industry because of their abil-
ity to take up and consume citrate to produce diacetyl and acetoin,
two components essential for a creamy and buttery aroma (8, 18,
22). Four strains in our panel were assigned to L. lactis subsp. lactis
bv. diacetylactis on the basis of results of PCR amplification of
citP, a plasmid-borne gene encoding the permease involved in
citrate uptake (34).

“Domesticated” L. lactis subsp. lactis currently contains 13 se-
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quence types (STs) organized into two main CCs (https://www
-mlst.biotoul.fr/Lactococcuslactissubsplactis/). The main CC
(CC1) contains 11 STs (ST1, ST6, ST9, ST10, ST15, ST16, ST18,
ST22, ST23, ST34, and ST36), with ST15 predicted to be the an-
cestor genotype, whereas CC2 comprises ST7 and ST4. MLST
analysis revealed that eight of the nine strains used in this study
belonged to CC1 (four strains of ST15, two strains of ST34, one
strain of ST10, and one strain of ST18) and that one in CC2 was
ST7 (Table 1). We therefore considered our strain sample to be
genetically representative of the “domesticated” ecotype. As strain
redundancy in bacterial collections cannot be excluded, especially
for strains belonging to the same ST, SmaI macrorestriction anal-
ysis and PFGE were used to confirm that each of these strains was
unique and different from the other eight. The genomic related-
ness of the selected strains was assessed by computing SDs from
pairwise comparisons of the SmaI macrorestriction patterns (see
Fig. S1A in the supplemental material): 52% of the calculated SD

values were lower than 0.35, the value observed when comparing
the two different subspecies L. lactis subsp. cremoris and lactis (6).
These findings confirmed previous descriptions of the substantial
genomic variability within L. lactis subsp. lactis (6). The consensus
tree built from UPGMA-based clustering of PFGE distances
yielded three major clusters (bootstrap value �0.50) and clustered
the four strains of L. lactis subsp. lactis bv. diacetylactis together
(bootstrap value, 0.61) (see Fig. S1B). However, strains of the
same ST or the same CC were not necessarily grouped together.

We thus considered unsupervised hierarchical clustering inte-
grating both genetic (MLST) and genomic (PFGE) data sets as an
alternative approach to improve strain clustering by taking into
account genotypic aspects. For this purpose, HAC with the Ward
criterion was performed to constitute hierarchical groups of mu-
tually exclusive subsets (32). The accuracy of the genotypic den-
drogram was assessed by bootstrapping, and a consensus tree was
built (bootstrap value �0.50) (Fig. 1). This integrated genotype
classification is consistent with the mean features of gene phylog-
eny, L. lactis subsp. lactis bv. diacetylactis discrimination, and
strain genomic uniqueness (Fig. 1). However, it failed to group

strains of ST15 in one class. The latter result can be explained by
evolutionary concepts. Knowing that clonal diversification of lac-
tococcal strains is mostly dependent on genome rearrangements
that have large effects on PFGE fingerprints (35), ST15 may be
more prone to macrorestriction polymorphism than other STs of
its CC (CC1) because it is the ancestor genotype.

Phenotypic biodiversity and subpopulation structure. (i)
Phenotypic data set. Eighty-two variables selected as being de-
scriptive of dairy performance, including physiological indicators
(growth, acidification) and extracellular metabolic products (sug-
ars, FAAs, organic acids, and VOCs) were assayed for the nine L.
lactis subsp. lactis strains grown in pasteurized standardized cow’s
milk. Data for some physiological indicators (acidification and
growth kinetics) were collected at various times during the milk
fermentations, but most were collected after 14 days of storage
(corresponding to the estimated half-life of fermented milk). Un-
der all conditions, growth started immediately after inoculation,
with maximal growth rates ranging from 0.60 to 0.80 h�1. No
significant difference was found for cell populations: there were
2.1 � 109 to 2.6 � 109 CFU · ml�1 at the end of the culture (when
the pH reached 4.60). Cell cultivability after 14 days was between
50 and 70%, confirming the growth similarities of all nine strains.

The acidification properties of the nine strains were compared.
As expected, the mean acidification rate of the four L. lactis subsp.
lactis bv. diacetylactis strains was 40% lower than that of the other
strains; this was due to the 4-fold higher acetoin concentration
and lower lactic acid production of the L. lactis subsp. lactis bv.
diacetylactis strains. The time taken for the fermentation to reach
a pH of 4.60 was 2 h longer for the L. lactis subsp. lactis bv. diacety-
lactis strains than for the other strains, a delay considered to be
significant for the dairy industry. Supernatant from 14-day fer-
mented milk was assayed for 18 FAAs; all were detected, and their
concentrations could be quantified. However, the biogenic amine
�-aminobutyric acid (GABA) was detected in only three strains,
EIP33A (0.1 mM), DIA-A, and MC70 (1 mM). A total of 47 dif-
ferent VOCs, belonging to the hydrocarbon, alcohol, aldehyde,
ketone, ester, sulfide compound, and free fatty acid (FFA) fami-
lies, were identified in the samples and quantified. To investigate
the relationships between strains and the phenotypic variables of
fermented milk, an ANOVA of the 82 variables was performed.
This analysis revealed that only VOCs were strongly dependent on
the strains (P value of �0.05 for the ANOVA test).

(ii) Metabolic exploration of fermented milk by correlation
investigations. The analysis of these 82 scaled variables as a single
integrated phenotypic data set allowed exploration of the meta-
bolic network in fermented milk. Spearman’s rank-order correla-
tions after P value multiple-testing corrections by the Benjamini-
Hochberg method (P value cutoff, 0.05) were then performed to
investigate pairwise associations between the variables involved in
strain signatures in milk (see Fig. S2 in the supplemental material).
The principal finding was a strong correlation (R � 0.70) among
VOCs of the FFAs (C4 to C9:2), methyl-ketone (2-undecanone,
2-tridecanone, 2-pentadecanone), aldehyde (hexadecanal), alco-
hol (heptanol, octanol, nonanol), and lactone (�-octalactone,
�-decalactone, �-dodecalactone) families (see Fig. S2A). All of
these metabolites are involved in the four main steps of lipolysis,
i.e., release of FFAs from milk triglycerides, followed by 	-oxida-
tion of released FFAs to 
-keto acids, then decarboxylation to
alkan-2-ones, and finally reversible reduction to the correspond-

FIG 1 Integrative genotypic classification of nine domesticated L. lactis subsp.
lactis strains from genetic (MLST) and genomic (PFGE) data sets. The Euclid-
ian distance metric and Ward’s criterion were used for hierarchical ascendant
clustering on scaled MLST and PFGE distances. From left to right, a strain
dendrogram, strain names, the presence of the citP gene (black diamonds),
STs, CCs, and the three main clusters based on PFGE classification (shading)
are shown. Bootstrap values above 0.50 are indicated at the corresponding
nodes (n � 1,000).
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ing alkan-2-ols (13, 36–38). The strong relationships among these
metabolites confirmed that they are involved in the same pathway.

The metabolites derived from glycolysis, more specifically,
those involved in pyruvate metabolism (acetaldehyde, lactic acid,
acetoin, diacetyl, and butanediol), displayed strong positive cor-
relations with each other (R � 0.67). The contribution of citrate
consumption to the production of diacetyl, acetoin, acetic acid,
lactic acid, and butanediol was confirmed by strong negative cor-
relations (R � �0.75) (see Fig. S2B).

Several correlations related to proteolysis were also identified.
First, the catabolic link between benzaldehyde and its amino acid
precursor, phenylalanine, was confirmed by a strong negative
correlation (R � �0.70). Metabolites of methionine catabolism
(sulfide and thiol VOCs) were positively correlated (see Fig. S2B).
Lastly, 3-methylbutanal and 2-methylpropanol, the main prod-
ucts of branched-chain amino acid catabolism, were positively
correlated (R � 0.61).

(iii) High strain phenotypic diversity. A PCA of the 54 fer-
mented milk samples (six cultures of each of the nine strains) was
used to study phenotypic strain diversity. This analysis was limited
to the first three PCs of the PCAs because the cumulative variance
analysis of PC1 to PC3 accounted for 67.8%, a percentage suffi-
ciently high to ensure that the PCA plots were representative of the
main features of the data set. On the basis of visual explorations of
the score plots (Fig. 2A and B), nine independent signatures, i.e.,
one per strain, were observed. This result illustrates the high phe-
notypic diversity of genetically closely related strains, all exhibit-
ing a dairy phenotype (efficient growth in milk associated with fast
coagulation). This result also confirms the suitability of the 82
monitored variables for establishing a discriminatory phenotypic
data set for investigation of the diversity of the “domesticated” L.
lactis subpopulation.

Thus, each of these nine strains has a unique phenotypic sig-
nature. We classified them according to their metabolic proxim-
ity. Although the PCA score plots allowed intuitive strain group-
ing, a clustering analysis was preferred to allow the robustness of
the strain classification to be assessed. The 82 variables were used
to build a dendrogram by hierarchical clustering (Fig. 3). The
accuracy of the classification was checked by bootstrap analysis,

which revealed that all of the biological replicates of a strain (six
independent experiments) were repeatedly grouped together
(bootstrap value �0.94), confirming the quality of the data. Thus,
our integrated phenotypic approach allows robust and accurate
strain identification and discrimination by analysis of fermented
milk. It would be interesting to analyze how these nine strains
could be grouped together on the basis of the proximity of their
phenotypes. To choose the relevant number of strain clusters in
this classification, two criteria were examined: the decrease in in-
terclass variance (data not shown) and bootstrap analysis (Fig. 3).
However, with these criteria, four, five, and nine clusters were
possible options, without its being possible to conclude which was
the most appropriate. Consequently, further investigations were
required to determine the number of clusters and, by extension,
the organization of the “domesticated” L. lactis subsp. lactis sub-
population.

(iv) Subpopulation organization and variable selection. To
identify the relevant number of strain clusters in the “domesti-
cated” L. lactis subsp. lactis subpopulation, a robustness analysis
was carried out. This strain cluster analysis also aimed to reduce
the number of variables used from 82, since strain discrimination
is no longer required. This approach allowed the identification of
the most significant phenotypic markers. We focused our study on
the variables making the largest contribution, i.e., those most re-
sponsible for strain positioning. From the variable selection (for
details, see Materials and Methods), 20 variables, corresponding
to 25% of the 82 initial variables, was found to be the minimal
number of most contributory variables allowing robust strain
clustering in each case (data not shown). Four strain clusters were
thereby defined (bootstrap value �0.82) and named I to IV. Their
compositions are shown in a dendrogram in Fig. 3. A supplemen-
tary PLS-DA was then used to estimate the error rate of strain
affiliation with the four clusters identified. With only the 25% of
the variables that contributed the most to this clustering, perfect
accuracy (100%) in strain cluster affiliation was predicted.

Thus, 20 of the 82 variables studied were identified as the most
contributory. Variable selection through sparse PCA confirmed
the suitability of the set of discriminatory variables. All of these
selective variables were related to VOCs and were classified into

FIG 2 PCA of domesticated L. lactis subsp. lactis strains in milk from an integrative phenotypic data set. Both panels A and B are score plots of PC1, PC2, and PC3

scores. Diamonds of the same color correspond to biological replicates of the same strain. Ellipses show the strain category models at a 95% confidence level.
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three main groups (A, B, and C) (Table 2). These groups are rep-
resentative of the three major catabolic pathways involved in fla-
vor formation, consistent with the findings of the correlation anal-
ysis. Group A is related to glycolysis (and citrate products except
for nonan-2-one), group B is involved in proteolysis, and group C
is involved in lipolysis. Analysis of the correlations between these
three groups of selected variables and the first three PCs of the
PCA (Table 2) demonstrated the relevance of the PCs for the anal-
ysis of metabolism.

To interpret the metabolic significance of each PC, the major
coefficients of correlation between the three variable groups and
each PC were investigated (Table 2). The first PC, with which all of
the group C variables (plus nonan-2-one) were positively corre-
lated, could be interpreted as the lipolytic activity of the strains in
milk. Group A variables were positively correlated with the second
PC, suggesting that PC2 is related to glycolysis. The third PC,
correlated only with group B variables, may be interpreted as an
indicator of proteolytic activity. From these results, the metabolic
orientations of the signatures of single strains could be easily iden-

tified. Thus, strains UCMA5713 and S86 display the highest lipo-
lytic activity; S87 produces the largest amounts of the end prod-
ucts of the citrate pathway; and strain DIA-A displays the highest
concentrations of VOCs from amino acid catabolism (Fig. 2A and
Table 2).

The biological significance of these four clusters was investi-
gated according to the metabolic interpretation of each of the PCs
(as described by using the 20 most contributory variables, groups
A, B, and C) and by positioning the four strain clusters in PCA
score plots (Fig. 2A and B). In cluster I, strains UCMA5713 and
S86 produced predominantly VOCs by intense lipolysis (group C)
whereas the levels of these compounds were relatively low in fer-
mentations with cluster III strains (DIA-A). In cluster II, strains
EIP37F and S87 were characterized mainly by the production of
acetoin, diacetyl, and butanediol (group A). Note that the DIA-A
strain was a singleton (cluster III), emphasizing its extreme phe-
notypic specificity. DIA-A was also associated with strong amino
acid catabolism (group B). Finally, the four remaining strains
(EIP41A, MC70, EIP33A, and EIP33F) belonged to cluster IV;

FIG 3 Integrative phenotypic classification of nine domesticated L. lactis subsp. lactis strains grown in milk. The Euclidian distance metric and Ward’s criterion
were used for hierarchical ascendant clustering based on 82 variables. From left to right, a strain dendrogram, the names of the 54 experiments (nine strains with
their six replicates, from A to F), STs from MLST, and the presence of the citP gene (black diamond) are shown. Bootstrap values above 0.50 are indicated at the
corresponding nodes (n � 500). Dotted squares with roman numerals I to IV in the left panel correspond to the four main conserved clusters identified by
robustness analysis.
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their phenotypic signatures are not characteristic of a particular
metabolic pathway, with near mean concentrations of the most
contributory VOCs. Therefore, we considered cluster IV to be
characterized by no dedicated metabolic pathway.

These findings proved that within a single cluster, other phe-
notypic variables were responsible for strain-specific signatures.
To identify the variables that are potentially specific markers of
each strain, a PCA of the complete phenotypic data set for each
strain cluster was performed. For metabolically undefined cluster
IV, this analysis revealed that EIP41A was further specifically iden-
tified by high sulfide VOC concentrations (responsible for onion
and sulfur aromas) whereas EIP33F was distinguished by high
residual amino acid (His, Ala, Pro, Gln, Val, Leu, Ile, Phe) con-
centrations in milk. Both a high growth rate and a high ethanol
concentration were characteristics of EIP33A, whereas MC70 ap-
peared to be characterized by high furfural and 2-furanmethanol
concentrations and the presence of GABA. The metabolites fur-
fural and 2-furanmethanol can be produced in the presence of
L-alanine and glucose under acidic conditions (especially at pHs
�5) and are characterized by a “bread and burnt” aroma (39).

Genotype-phenotype integration. Phenotype-based strain
clustering (Fig. 2) appeared to correspond to neither MLST phy-
logeny (strains of the same ST did not cluster together) nor
genomic PFGE profiles (four clusters formed rather than the three
groups of related strains suggested by PFGE) (Fig. 1). Moreover,
the four strains belonging to L. lactis subsp. lactis bv. diacetylactis
were distributed among different phenotypic clusters (II, III, and
IV, Fig. 3). Comparisons of the integrated phenotypic classifica-
tion (Fig. 3) with genotypic strain diversity (Fig. 1) confirmed the

discrepancies among the classifications. In particular, the specific-
ity of strain MC70 is underlined in the genotypic classification
because of its specific CC2 affiliation of the “domesticated”
strains, but its phenotypic signature was identified as not dedi-
cated to a particular metabolic pathway. These results highlight
the need for a system of classification integrating both genotypes
and phenotypes to describe L. lactis subsp. lactis biodiversity.

Using the integrated genotype-phenotype data set, strains were
subjected to both PCA and clustering analysis (Fig. 4). This led to
a five-cluster organization rather than the four strain clusters (I to
IV) generated with discriminatory phenotypic markers. Two
groups in these two classifications were similar (clusters II and
III). The previous cluster IV was the most affected by the new
classification. In particular, MC70, which was previously classified
in cluster IV, was now singled out. The variable analysis under-
lined the contribution of MLST phylogenic distances to PC2 (data
not shown) to this new classification and thus the position of
MC70. The use of independent genetic (MLST) and genomic
(PFGE) data sets in addition to phenotypic variables revealed the
relevance of MLST in the classification. Indeed, unlike MLST data,
the PFGE genomic diversity data set did not change the pheno-
typic PCA or clustering results (data not shown). The other strains
previously classified in cluster IV (EIP41A and EIP33F) were clas-
sified in existing clusters (I and IV) by the integrated genotype-
phenotype classification.

Variable selection (as previously described) demonstrated that
no genotypic variable (either MLST or PFGE distances) was se-
lected as being one of the most contributory variables. The con-

TABLE 2 Coefficients of correlation of the 20 most contributory variables in the PCA to the three PCsa

Group and variable

PC1 PC2 PC3

R P value R P value R P value

A
Acetoin �0.55 1.45 � 10�5 0.77 1.54 � 10�11

Acetaldehyde 0.86 5.51 � 10�16 �0.37 5.37 � 10�3

2-Nonanone 0.31 2.19 � 10�2 0.89 9.87 � 10�20

Butan-2,3-diol D� �0.46 5.24 � 10�4 0.81 8.77 � 10�14

B
2-Methylbutanal �0.57 5.50 � 10�6 0.29 3.05 � 10�2 0.74 1.95 � 10�10

Butyl acetate �0.54 2.24 � 10�5 �0.29 3.05 � 10�2 0.76 3.83 � 10�11

2-Methylpropan-1-ol �0.33 1.54 � 10�2 0.51 7.56 � 10�5 0.73 2.64 � 10�10

2-Hydroxypentan-3-one �0.61 8.44 � 10�7 0.43 1.10 � 10�5 0.60 1.39 � 10�6

Ethanol �0.28 4.22 � 10�2 �0.43 1.19 � 10�3 0.90 8.02 � 10�21

C
Octanol 0.79 1.28 � 10�12 0.53 3.21 � 10�5

Undecane-2-one 0.90 1.94 � 10�20 0.36 7.82 � 10�20

Butanoic acid 0.96 8.93 � 10�30

2-Tridecanone 0.88 8.68 � 10�19 0.44 7.48 � 10�4

Hexanoic acid 0.93 5.21 � 10�24 0.28 3.73 � 10�2

Heptanoic acid 0.92 3.38 � 10�23 0.35 8.78 � 10�3

2-Pentadecanone 0.89 8.43 � 10�20 0.42 1.43 � 10�3

Octanoic acid 0.92 3.71 � 10�22 0.34 1.23 � 10�2

Nonanoic acid 0.89 8.73 � 10�20 0.37 5.51 � 10�3

Decanoic acid 0.93 1.00 � 10�23 0.28 3.94 � 10�2

�-Dodecalactone 0.90 2.95 � 10�29 0.32 1.73 � 10�2

a Significance was defined as a P value below 0.05. R, coefficient of correlation of the variable to the PC. Hierarchical clustering of ascendant classification using the Euclidian
distance metric and Ward’s criterion is shown for groups A to C.
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tributory variables were, again, mostly VOCs (21/23), acetic acid,
and fermentation time.

DISCUSSION

We report an analysis of the phenotypic diversity of nine strains of
L. lactis subsp. lactis representative of the “domesticated” ecotype
and exhibiting a dairy phenotype (efficient growth in milk and fast
coagulation). Eighty-two variables related to important dairy fea-
tures, including physiological descriptors (growth, acidification)
(10), carbon and nitrogen metabolites, and flavor determinants
(14, 40), were monitored in 54 fermentations (6 per strain). Our
integrated phenotypic approach confirms the suitability of these
82 variables for the establishment of well-characterized dairy
strain signatures in fermented milk. Furthermore, this study re-
veals large strain-to-strain phenotypic divergences that are suffi-
cient for the accurate identification of the nine strains from their
milk fermentation signatures. Consequently, these 82 variables
provide a useful data set for the classification of dairy strains and
provide new possibilities for applications, particularly for strain
identification and selection.

Unexpectedly, these results illustrate the substantial pheno-
typic diversity in a limited genetic subpopulation of strains. In-
deed, phylogenetic studies suggest that dairy strains are poor con-
tributors to the overall genetic diversity of L. lactis subsp. lactis (8,
21, 41). “Domesticated” strains arose from a genetic bottleneck or
were the result of the successful adaptation to milk of a common
“environmental” ancestor due to genomic flexibility (6, 42, 43).
Consequently, it has been suggested that the phenotypic diversity
of dairy strains is expected to be low because of the small pool of
strains (44, 45). However, despite the extensive genotypic similar-
ities, we report substantial phenotypic divergence between “do-
mesticated” strains: consequently, these strains have different po-
tentials for different industrial applications.

The phenotypic biodiversity of these dairy strains could be sub-
divided into four robust clusters based on metabolic orientations
(lipolysis, proteolysis, and glycolysis). These clusters may be help-
ful in assessing strain relatedness. The analysis of more L. lactis
subsp. lactis collections, including strains representative of the

“domesticated” ecotype from several dairy environments, would
probably lead to the compositions of these clusters being modified
and to the identification of additional clusters.

However, these findings imply that it would be useful to have
appropriate markers to define the specific abilities of a strain. In-
deed, a clear description of the differences between strain groups is
necessary for better control of starter choice. Therefore, we used
the integrated phenotypic data set to identify the 20 variables that
contribute the most to discrimination between the strains. All of
these variables are related to VOCs. Our study confirms that se-
lected VOCs can be used as discriminatory phenotypic markers to
predict strain signatures in milk processing (46). Combined with
the recent development of ultrafast GC-time of flight MS technol-
ogy for fermented milk (46, 47), monitoring of these markers
should help in the high-throughput screening of strain collec-
tions. Further analyses of these 20 VOCs revealed that the three
major pathways involved in flavor, i.e., lipolysis, proteolysis, and
glycolysis, were represented. Proteolysis and glycolysis in milk
have been studied and described (13, 48, 49), whereas lipolysis in
fermented milk has been regularly underestimated; this is largely
because many experiments are carried out with skim milk media.
This work underlines the importance of lipolysis, because more
than half of the most discriminatory VOC markers belonged to
this class.

L. lactis subsp. lactis bv. diacetylactis strains are used in the
dairy industry to produce acetoin and notably diacetyl, which im-
parts a high level of buttery flavor notes. Surprisingly, the four
strains in our sample belonging to L. lactis subsp. lactis bv. diacety-
lactis (DIA-A, EIP33F, S87, and EIP33F) were not grouped in a
single cluster at a phenotypic level but were classified together by
integrated genotypic classification. Interestingly, this feature dem-
onstrates that acetoin and diacetyl production is not relevant for
discriminating L. lactis subsp. lactis bv. diacetylactis strain signa-
tures in milk at a phenotypic level. A recent study of diacetyl- and
acetoin-producing L. lactis strains isolated from diverse origins
indicated that the production of this aroma is not restricted to
strains able to grow in milk (50). These observations illustrate the
intragroup metabolic diversity of these strains and show the need

FIG 4 Integrative phenotypic and genotypic PCA of nine domesticated L. lactis subsp. lactis strains grown in milk. Score plots of PC1-PC2 (A) and PC1-PC3 (B)
are shown. Diamonds with the same color are biological replicates of the same strain, and colored ellipses show the strain category models (at a 95% confidence
level). Dotted squares with roman numerals I to IV correspond to the four phenotypic clusters (Fig. 3), and black ellipses represent the five integrative
genotype-phenotype clusters.
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for further metabolic investigations to characterize these strains
thoroughly (notably, amino acid and lipid catabolism).

The phenotypic classification was not entirely consistent with
the genetic (MLST) and genomic (PFGE) dendrograms or with
the new integrated genotypic classification. The proposed inte-
grated genotypic classification of these dairy strains was coherent
with the CC phylogenic organization of “domesticated” strains
(MLST) (6), discrimination of the L. lactis subsp. lactis bv. diacety-
lactis lineage (based on results of PCR amplification of citP), and
strain genomic uniqueness (nonredundancy of SmaI macro-
restriction by PFGE).

Genotype and phenotype matching is not straightforward, as
previously demonstrated, because of the regulation of genome
and proteome expression (18, 21, 43). However, we identified
contributory phenotypic determinants that are promising for the
discovery of reliable genetic markers. This approach has been used
previously but only at the L. lactis subsp. lactis and cremoris level
(9, 22). On the basis of the three groups of VOCs identified as the
most contributory variables, the corresponding genes (i.e., those
involved in lipolysis, proteolysis, and glycolysis and their regula-
tion) could be sequenced and their variability analyzed.

We also considered a genotype-phenotype classification to in-
tegrate all aspects of dairy L. lactis subsp. lactis diversity. We found
that the genotype made only a small contribution to diversity,
which depends on large phenotypic differences. Nevertheless, in-
tegration of genotypic diversity modified the phenotypic classifi-
cation and led to a five-cluster organization rather than the four
strain clusters generated with only discriminatory phenotypic
markers. In particular, this increased the diversity of the strains
“not dedicated to a metabolic pathway” of cluster IV. Moreover,
“domesticated” strains of L. lactis subsp. lactis are characterized by
noticeable mobility and substantial genomic variability of their
genomes (6). This genotypic variability may contribute signifi-
cantly to variations in the properties of the starter culture. Adding
genotypic characteristics would ensure that all of the strain poten-
tialities encoded in the genotype would be covered, including
those not expressed in our model dairy process but which may be
of relevance to other technological applications (such as osmotic
resistance in cheese ripening or phage resistance). The genotypic-
phenotypic classification tends toward a predictive classification
for starter manufacturing.

Finally, this study illustrates the feasibility of establishing well-
characterized strain signatures. This approach could be extended
to mixed-culture profiling. Indeed, it may be possible to assess the
effect of strain adjunction in cocultures of lactococci by compar-
ing single-strain signatures to the resulting mix signatures. This
method may complement traditional trial-and-error methods
used to design targeted starters for particular applications and
facilitate the rational development of defined mixed cultures.
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